Math, asked by dimpli, 1 year ago

sin^2(24)- sin^2(6) =...?

Answers

Answered by Anonymous
71
We have, sin²A-sin²B=sin(A+B)sin(A-B) hence, sin²24-sin²6=sin30sin18=(1/2)(√5-1)/4=(√5-1)/8 Answer: (√5-1)/8
Answered by pinquancaro
108

Answer:

\sin^2(24)-\sin^2(6)= \frac{\sqrt5-1}{8}

Step-by-step explanation:

Given : Expression \sin^2(24)-\sin^2(6)

To find : The value of the expression ?

Solution :

Using trigonometric identity,

\sin^2A - \sin^2B = \sin(A-B)\sin(A+B)

Where, A=24 and B=6

Substitute in the formula,

\sin^2(24)-\sin^2(6)= \sin(24-6)\sin(24+6)

\sin^2(24)-\sin^2(6)= \sin(18)\sin(30)

\sin^2(24)-\sin^2(6)= \sin(18)\times \frac{1}{2}

We know, \sin(18)=\frac{\sqrt5-1}{4}

\sin^2(24)-\sin^2(6)= \frac{\sqrt5-1}{4}\times \frac{1}{2}

\sin^2(24)-\sin^2(6)= \frac{\sqrt5-1}{8}

Therefore, \sin^2(24)-\sin^2(6)= \frac{\sqrt5-1}{8}

Similar questions