sin^2 ((2pi)/3) + cos((3pi)/4) - 3/2 * tan((7pi)/3)
Answers
Step-by-step explanation:
sin^2pi/4+sin^2(3pi)/4+sin^2(5pi)/4+sin^2(7pi)/4
sin^2pi/4+sin^2(3pi)/4+sin^2(5pi)/4+sin^2(7pi)/4<br>
sin^2pi/4+sin^2(3pi)/4+sin^2(5pi)/4+sin^2(7pi)/4<br>(1/sqrt2)^2+(1/sqrt2)^2(-1/sqrt2)^2+(-1/sqrt2)^2
sin^2pi/4+sin^2(3pi)/4+sin^2(5pi)/4+sin^2(7pi)/4<br>(1/sqrt2)^2+(1/sqrt2)^2(-1/sqrt2)^2+(-1/sqrt2)^2<br>
sin^2pi/4+sin^2(3pi)/4+sin^2(5pi)/4+sin^2(7pi)/4<br>(1/sqrt2)^2+(1/sqrt2)^2(-1/sqrt2)^2+(-1/sqrt2)^2<br>1/2+1/2+1/2+1/2
sin^2pi/4+sin^2(3pi)/4+sin^2(5pi)/4+sin^2(7pi)/4<br>(1/sqrt2)^2+(1/sqrt2)^2(-1/sqrt2)^2+(-1/sqrt2)^2<br>1/2+1/2+1/2+1/2<br>
sin^2pi/4+sin^2(3pi)/4+sin^2(5pi)/4+sin^2(7pi)/4<br>(1/sqrt2)^2+(1/sqrt2)^2(-1/sqrt2)^2+(-1/sqrt2)^2<br>1/2+1/2+1/2+1/2<br>2
Answer:
Value is 3/4 -1/√2 -3√3/2
Step-by-step explanation:
sin²2π/3 + cos3π/4 - 3/2 *tan7π/3
=( sin(π- π/3))² +cos(π- π/4) -3/2 *tan(2π +π/3)
= (sin π/3)² - cos π/4 -3/2 *tan π/3
=( √3/2)²- 1/√2 -3/2*√3
= 3/4 -1/√2 -3√3/2