Math, asked by sidolrajfirstname, 2 days ago

sin^2(30+A)-sin^2(30-A)=√3/2sin20​

Answers

Answered by tennetiraj86
0

The measure of A = 10°

Given :-

sin²(30+A) - sin²(30-A) = (√3/2) sin 20°

To find :-

The measure of A

Solution :-

Given that

sin²(30+A)° - sin²(30-A)° = (√3/2) sin 20°

We know that

(a+b)(a-b) = -b²

We have, In LHS ,

a = sin (30+A)°

b = sin (30-A)°

Now,

sin (30°+A+30°-A) sin (30°+A-30°+A)=(√3/2) sin 20°

=> sin (60°) sin (2A) = (√3/2) sin 20°

=> (√3/2) sin 2A = (√3/2) sin 20°

On comparing both sides then

2A = 20°

=> A = 20°/2

=> A = 10°

Therefore, The measure of A = 10°

Alternative Method:-

Given that

sin²(30+A)° - sin²(30-A)° = (√3/2) sin 20°

We know that

sin (C+D) = sin C cos D + cos C sin D

now

sin (30+A)

= sin 30° cos A + cos 30° sin A

= (1/2) cos A + (√3/2) sin A

= (cos A + √3 sin A)/2

Now,

sin² (30+A)

= [(cos A + √3 sin A)/2]²

= (cos² A + 3 sin² A + 2√3 sin A cos A]/4

= ( cos² A + 3 sin² A + √3 sin 2A)/4

and

We know that

sin (C-D) = sin C cos D - cos C sin D

now

sin (30-A)

= sin 30° cos A - cos 30° sin A

= (1/2) cos A - (√3/2) sin A

= (cos A -√3 sin A)/2

Now,

sin² (30-A)

= [(cos A - √3 sin A)/2]²

= (cos² A + 3 sin² A - 2√3 sin A cos A]/4

= ( cos² A + 3 sin² A - √3 sin 2A)/4

Now,

sin²(30+A)° - sin²(30-A)°

= [( cos² A + 3 sin² A +√3 sin 2A)/4] - [ ( cos² A + 3 sin² A - √3 sin 2A)/4 ]

= (√3 sin 2A + √3 sin 2A)/4

= 2√3 sin 2A/4

= (√3 sin 2 A)/2

= (√3/2) sin 2A

Now

Given equation becomes

(√3/2) sin 2A = (√3/2) sin 20°

On comparing both sides then

2A = 20°

=> A = 20°/2

=> A = 10°

Therefore, The measure of A = 10°

Answer :-

The measure of A is 10°

Used formulae:-

(a+b)(a-b) = a²-b²

(a+b)² = +2ab+

(a-b)² = -2ab+

(a+b)²-(a-b)² = 4ab

sin 60° = 3/2

sin (C+D) = sin C cos D + cos C sin D

sin (C-D) = sin C cos D - cos C sin D

sin 2A = 2 sin A cos A

Answered by posavenkat123
0

Answer:

Step-by-step explanation:

sin^2 30 means sin 30*sin 30 = (1/3^0.5)*(1/3^0.5) = 1/3

sin 30^2 means sin 900. Divide 900/180 = 5. Or sin 30^2= sin 900 = sin 5(pi) = 0.

Similar questions