Sin ^2 (64°- theta) + Sin ^2 (26°- theta)
Answers
Answered by
2
Answer:
The value of sin² ( 64° - θ ) + sin² ( 26° - θ ) is 1.
Step-by-step-explanation:
We have to find the value of sin² ( 64° - θ ) + sin² ( 26° - θ ).
sin² ( 64° - θ ) + sin² ( 26° - θ )
⇒ sin² ( 64° - θ ) + sin² [ ( 90° - 64° ) - θ ]
⇒ sin² ( 64° - θ ) + cos² ( 64° - θ ) - - - [ sin² ( 90° - θ ) = cos² θ ]
⇒ 1 - - - [ sin² θ + cos² θ = 1 ]
∴ The value of sin² ( 64° - θ ) + sin² ( 26° - θ ) is 1.
───────────────────────
Additional Information:
Some Trigonometric Identities:
1. sin θ = cos ( 90° - θ )
2. cos θ = sin ( 90° - θ )
3. tan θ = cot ( 90° - θ )
4. cot θ = tan ( 90° - θ )
5. sec θ = cosec ( 90° - θ )
6. cosec θ = sec ( 90° - θ )
7. sin² θ + cos² θ = 1
8. sec² θ = 1 + tan² θ
9. cosec² θ = 1 + cot² θ
Similar questions