Math, asked by smohanta2711, 11 months ago

sin^2 70°+ cos^2 110° = 1​

Answers

Answered by pulakmath007
16

SOLUTION

TO PROVE

 \sf{  { \sin}^{2}  {70}^{ \circ} +  { \cos}^{2}  {110}^{ \circ}  = 1 \: }

EVALUATION

 \sf{  { \sin}^{2}  {70}^{ \circ} +  { \cos}^{2}  {110}^{ \circ}  \: }

 =  \sf{  { \sin}^{2}  {70}^{ \circ} +   { \big(   \cos {110}^{ \circ}  \big)}^{2}   \: }

 =  \sf{  { \sin}^{2}  {70}^{ \circ} +   { \bigg[ \cos ( {180}^{ \circ} -  {70}^{ \circ})  \bigg] }^{2}   \: }

 =  \sf{  { \sin}^{2}  {70}^{ \circ} +   { \bigg[ \cos ( 2 \times {90}^{ \circ} -  {70}^{ \circ})  \bigg] }^{2}   \: }

 =  \sf{  { \sin}^{2}  {70}^{ \circ} +   { \bigg[ -  \cos  {70}^{ \circ}   \bigg] }^{2}   \: }

 =  \sf{  { \sin}^{2}  {70}^{ \circ} +   { \cos}^{2}  {70}^{ \circ}  \: }

 =  \sf{1 \:  \:  \:  \:  \: ( \:  \because  { \sin}^{2}   \theta +   { \cos}^{2}  \theta \: = 1  \: )}

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Prove that tan(45+theta)=1+tan theta/1-tan theta

https://brainly.in/question/1747598

Similar questions
Chinese, 11 months ago