sin[2π-8]cos[π+A]tan[π/2-A]÷sin[π/2+A]cot[2π+A]sin[π-A]=
Answers
Answer:
Given:
\frac{sin(2\pi -A)cos(\pi+A)tan(\frac{\pi}{2} -A)}{sin(\frac{\pi}{2}+A)cot(2\pi+A)sin(\pi-A)}sin(2π+A)cot(2π+A)sin(π−A)sin(2π−A)cos(π+A)tan(2π−A)
To find:
The Simplified form of the given term
Solution:
We have given the ratio of the trigonometry where we just have to find the simplified form of the particular ratios first to get the value of the given term
we have the equation as
\frac{sin(2\pi -A)cos(\pi+A)tan(\frac{\pi}{2} -A)}{sin(\frac{\pi}{2}+A)cot(2\pi+A)sin(\pi-A)}sin(2π+A)cot(2π+A)sin(π−A)sin(2π−A)cos(π+A)tan(2π−A)
now by the concept of the quadrant of the ratios we get
\frac{-sinA(-cosA)cotA}{cosAcotAsinA}cosAcotAsinA−sinA(−cosA)cotA
\frac{sinAcosAcotA}{cosAcotAsinA}cosAcotAsinAsinAcosAcotA
as the numerator and denominator of the fraction is equal so the fraction will give you answer as 1
Hence the simplified form will be 1