Math, asked by tahere77, 10 months ago

sin^2(A+B) - sin^2(A-B) = sin2A sin2B
i need to prove this

Answers

Answered by waqarsd
0

Step-by-step explanation:

let \:  \: a = x \:  \:  \: b \:  \:  = y \:  \:  \:  \\  \\  \\  { \sin}^{2} (x + y) -  { \sin }^{2} (x - y) \\  \\ wkt \\  \\  \sin(x + y)  =  \sin(x)  \cos(y)  +  \cos(x)  \sin(y)  \\  \\  \sin(x - y)  =  \sin(x)  \cos(y)  -  \cos(x)  \sin(y)  \\  \\  {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy \\  \\ 2 \sin(x)  \cos(x)   =  \sin(2x) \\  \\  \\ now \\  \\  { \sin}^{2} (x + y) -  { \sin }^{2} (x - y) \\  \\  = ( \sin(x)  \cos(y)  +  \cos(x)  \sin(y)) {}^{2}  -  {( \sin(x)  \cos(y)   -   \cos(x)  \sin(y))}^{2}  \\  \\  = 4 \sin(x)  \cos(x)  \sin(y)  \cos(y)  \\  \\  = (2 \sin(x)  \cos(x) )(2 \sin(y)  \cos(y) ) \\  \\  =  \sin(2x)  \sin(2y)  \\  \\  =  \sin(2a)  \sin(2b)  \\  \\

HOPE IT HELPS

Answered by Anonymous
0

Step-by-step explanation:

\begin{lgathered}let \: \: a = x \: \: \: b \: \: = y \: \: \: \\ \\ \\ { \sin}^{2} (x + y) - { \sin }^{2} (x - y) \\ \\ wkt \\ \\ \sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y) \\ \\ \sin(x - y) = \sin(x) \cos(y) - \cos(x) \sin(y) \\ \\ {(x + y)}^{2} - {(x - y)}^{2} = 4xy \\ \\ 2 \sin(x) \cos(x) = \sin(2x) \\ \\ \\ now \\ \\ { \sin}^{2} (x + y) - { \sin }^{2} (x - y) \\ \\ = ( \sin(x) \cos(y) + \cos(x) \sin(y)) {}^{2} - {( \sin(x) \cos(y) - \cos(x) \sin(y))}^{2} \\ \\ = 4 \sin(x) \cos(x) \sin(y) \cos(y) \\ \\ = (2 \sin(x) \cos(x) )(2 \sin(y) \cos(y) ) \\ \\ = \sin(2x) \sin(2y) \\ \\ = \sin(2a) \sin(2b) \\ \\\end{lgathered}

Similar questions