Math, asked by karpratiksha, 1 month ago

sin^2 a +sin^2 a ×tan^2 a =tan^2 a prove that

Answers

Answered by TheBrainlistUser
2

Correct Question

 \sin {}^{2} a   \tan {}^{2} a =   \tan {}^{2} a -  \sin {}^{2} a

Given :-

 \sin {}^{2} a   \tan {}^{2} a =  \tan {}^{2} a -  \sin {}^{2} a

To Prove :-

\sin {}^{2} a \tan {}^{2} a =  \tan {}^{2} a -  \sin {}^{2} a

Proof :-

Let us first find the value of right hand side (RHS) that is tan²a - sin²a as shown below :

  \tan {}^{2} a -  \sin {}^{2} a

 =  \frac{ \sin {}^{2} a }{ \cos{}^{2}a  }  - \sin {}^{2} a \\

(∵ \tan \: x =  \frac{ \sin \: x }{ \cos \: x } ) \\

 =  \frac{ \sin {}^{2}a -  \sin {a}^{2} \cos {}^{2} a  }{\cos {}^{2} a}  \\  =  \sin {}^{2}a(\frac{1 - \cos {}^{2} a}{\cos {}^{2} a} ) \:  \:  \:  \:  \:   \\  =  \frac{\sin {}^{2}a}{\cos {}^{2} a} (1 - \cos {}^{2} a) \:  \:  \:  \:   \\  =  \tan {}^{2} a  \sin {}^{2} a = RHS

(∵  \tan \: x =  \frac{ \sin \: x }{ \cos \: x} \: ,1 -  \cos {}^{2} x =  \sin {}^{2} x) \\

Since RHS = LHS

Hence,

\sin {}^{2} a \tan {}^{2} a =  \tan {}^{2} a -  \sin {}^{2} a

Hence Proved !

Similar questions