Math, asked by yadavunnati816, 6 months ago

sin^2 A tan A+ cos^2 A cot A+ 2 sin A cosA = tan A+ cot A​

Answers

Answered by Anonymous
96

Answer:

\Large\underline{\underline{\sf{ \color{magenta}{\qquad Given \qquad}  }}}

LHS =  \sin² \: A \cot² \: A +  \cos² \: A \tan² \:  A

 =  \sin²  \: A \:  \times  \frac{ \ \cos² \: A   }{ \sin² A }  +  \cos²  \: A \:  \times  \frac{ \sin² A }{ \cos² A  }

 \cos²A +  \sin²A

 = 1

 = RHS

\boxed{\sf\red{Hence Proved}}


Anonymous: Perfect❣️
Anonymous: thanks
Answered by Anonymous
184

To prove :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

sin² A tan A + cos² A cot A + 2 sin A cos A = tan A + cot A

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Consider sin² A tan A + cos² A cot A + 2 sin A cos A

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{  =  {sin}^{2}A \dfrac{sin \: A}{cos \: A}  +  {cos}^{2}A \dfrac{cos \: A}{sin \:A }  + 2 \: sin  \:A \: cos \: A  }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{ =\dfrac{ {sin}^{3}A }{cos \: A} +  \dfrac{ {cos}^{3}A }{sin \: A}   + 2 \: sin \: A \: cos \: A}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{ =  \dfrac{ {sin}^{4} A +  {cos}^{4}A + 2 \:  {sin}^{2} A  \:  {cos}^{2} A }{sin \:A \: cos \:  A} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf{= \dfrac{( {sin}^{2} A +  {cos}^{2}A) {}^{2}  }{sin \:A \: cos \:A  } }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{ =  \dfrac{1}{sin \: A \: cos \: A} \: \:  \:  ...(1) }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now, consider tan A + cot A

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{ = \dfrac{sin \: A}{cos \: A} +  \dfrac{cos \:A }{sin \:A }  }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{ = \dfrac{ {sin}^{2}A +  {cos}^{2} A }{sin \: A \: cos \: A}   }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{ = \dfrac{1 }{sin \: A \: cos \: A} \:  \:  \: ...(2) }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

From (1) and (2), we have,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

sin² A tan A + cos² A cot A + 2 sin A cos A = tan A + cot A

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence proved..

Similar questions