Math, asked by santosh2137, 1 year ago

sin^2÷coc^2 + cos^2÷sin^2 = sec^2-cosec^2-2​

Answers

Answered by MarkAsBrainliest
4
\underline{\bold{Solution:}}

\text{Now, L.H.S.}

 \bold{ = \dfrac{sin^{2}\theta}{cos^{2}\theta} + \dfrac{cos^{2}\theta}{sin^{2}\theta}}

\bold{= tan^{2}\theta + cot^{2}\theta}

\bold{= sec^{2}\theta - 1 + 1 - cosec^{2}\theta}

\boxed {\tiny{\bold{Since, \: sec^{2}\theta - tan^{2}\theta = 1 \:\: \& \:\: cosec^{2}\theta - cot^{2}\theta = 1 }}}

\bold{= sec^{2}\theta - cosec^{2}\theta}

\text{= R.H.S}

\to \boxed{\small{\bold{\dfrac{sin^{2}\theta}{cos^{2}\theta} + \dfrac{cos^{2}\theta}{sin^{2}\theta} = sec^{2}\theta - cosec^{2}\theta}}}

\bold{\{PROVED\}}
Similar questions