Math, asked by barshadas99972, 11 hours ago

sin ∅ - 2 sin³ ∅ / 2 cos ³ ∅ - cos ∅
a ) cos ∅
b) sio ∅
c)tan ∅
d) cot ∅​

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{\dfrac{sin(\phi)-2\,sin^3(\phi)}{2\,cos^3(\phi)-cos(\phi)}}

\tt{=\dfrac{sin(\phi)\big\{1-2\,sin^2(\phi)\big\}}{cos(\phi)\big\{2\,cos^2(\phi)-1\big\}}}

\tt{=\dfrac{sin(\phi)\big\{1-2\,(1-cos^2(\phi))\big\}}{cos(\phi)\big\{2\,cos^2(\phi)-1\big\}}}

\tt{=\dfrac{sin(\phi)\big\{1-2+2\,cos^2(\phi)\big\}}{cos(\phi)\big\{2\,cos^2(\phi)-1\big\}}}

\tt{=\dfrac{sin(\phi)\big\{2\,cos^2(\phi)-1\big\}}{cos(\phi)\big\{2\,cos^2(\phi)-1\big\}}}

\tt{=\dfrac{sin(\phi)}{cos(\phi)}}

\tt{=tan(\phi)}

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given triangle expression is

\rm :\longmapsto\:\dfrac{sin\phi  -  {2sin}^{3}\phi}{ {2cos}^{3}\phi  - cos\phi  }

\rm \:  =  \: \dfrac{sin\phi (1 -  {2sin}^{2} \phi )}{cos\phi ( {2cos}^{2}\phi  - 1)}

We know,

\rm :\longmapsto\:\boxed{\tt{  {sin}^{2} x +  {cos}^{2}x = 1 \: }}

So, using this identity, the above expression can be rewritten as

\rm \:  =  \: \dfrac{sin\phi ( {sin}^{2}\phi  +  {cos}^{2}\phi -  {2sin}^{2} \phi )}{cos\phi ( {2cos}^{2}\phi  -  [{sin}^{2}\phi + {cos}^{2}\phi ])}

\rm \:  =  \: \dfrac{sin\phi ( {cos}^{2}\phi -  {sin}^{2} \phi )}{cos\phi ( {2cos}^{2}\phi  -  {sin}^{2}\phi  - {cos}^{2}\phi )}

\rm \:  =  \: \dfrac{sin\phi ( {cos}^{2}\phi -  {sin}^{2} \phi )}{cos\phi ( {cos}^{2}\phi  -  {sin}^{2}\phi )}

\rm \:  =  \: \dfrac{sin\phi }{cos\phi }

\rm \:  =  \: tan\phi

Hence,

\rm :\longmapsto\:\boxed{\tt{ \dfrac{sin\phi  -  {2sin}^{3}\phi}{ {2cos}^{3}\phi  - cos\phi } = tan\phi }}

So, Option (c) is Correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions