Math, asked by naikd, 3 months ago

sin^2 theta (1/1-cos theta + 1/1+cos theta) = 2​

Answers

Answered by BrainlyPopularman
8

TO PROVE :

  \\ \implies \bf \sin^2(\theta) \left( \dfrac{1}{1- \cos \theta} +\dfrac{1}{1 + \cos \theta}\right) = 2\\

SOLUTION :

• Let's take L.H.S. –

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{1}{1- \cos \theta} +\dfrac{1}{1 + \cos \theta}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{1 + \cos \theta +1 -  \cos \theta}{(1- \cos \theta)(1 + \cos \theta)}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{1+1}{(1- \cos \theta)(1 + \cos \theta)}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{2}{(1- \cos \theta)(1 + \cos \theta)}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{2}{(1)^{2} - (\cos \theta)^{2}}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{2}{1-\cos^{2}  \theta}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{2}{\sin^{2}  \theta}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: 2 \left( \dfrac{\sin^2\theta}{\sin^{2}  \theta}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: 2(1) \\

  \\ \ \bf  \:  \:  =  \:  \: 2\\

  \\ \ \bf  \:  \:  =  \:  \: R.H.S.\\

  \\ \ \bf  \:  \: \longrightarrow\:  \: Hence \:  \:  Proved \\

Answered by xXMarziyaXx
2

TO PROVE :–

  \\ \implies \bf \sin^2(\theta) \left( \dfrac{1}{1- \cos \theta} +\dfrac{1}{1 + \cos \theta}\right) = 2\\

SOLUTION :–

• Let's take L.H.S. –

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{1}{1- \cos \theta} +\dfrac{1}{1 + \cos \theta}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{1 + \cos \theta +1 -  \cos \theta}{(1- \cos \theta)(1 + \cos \theta)}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{1+1}{(1- \cos \theta)(1 + \cos \theta)}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{2}{(1- \cos \theta)(1 + \cos \theta)}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{2}{(1)^{2} - (\cos \theta)^{2}}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{2}{1-\cos^{2}  \theta}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: \sin^2(\theta) \left( \dfrac{2}{\sin^{2}  \theta}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: 2 \left( \dfrac{\sin^2\theta}{\sin^{2}  \theta}\right) \\

  \\ \ \bf  \:  \:  =  \:  \: 2(1) \\

  \\ \ \bf  \:  \:  =  \:  \: 2\\

  \\ \ \bf  \:  \:  =  \:  \: R.H.S.\\

  \\ \ \bf  \:  \: \longrightarrow\:  \: Hence \:  \:  Proved \\

Similar questions