Math, asked by manassrikar, 10 months ago

sin^2 x+4sinx +5€[k,5k] => k=?​

Answers

Answered by SᴘᴀʀᴋʟɪɴɢCᴀɴᴅʏ
11

ANSWER

f(x)=sin2x+4sinx+5

=(sinx+2)2+1

∴ max. value of f(x)=9+1=10sinx=1

min value of f(x)=2sinx=−1

∴ Range =[k,5k]=[2,10]

k=2

Answered by jtg07
4

Step-by-step explanation:

we \: will \: use \: completing \: the \: square \: method

let \sin(x) be \: t

 {t}^{2}  + 4t + 5

 {t}^{2}  + (2)(2)(t) + 4 + 1

{(t + 2)}^{2}  + 1

 (\sin(x)  + 2) + 1

range \: of \: sin \:x \: is \: from \:  - 1to1

( - 1 \: to \: 1)

add \: 2

(1 \: to \: 3)

square \: both \: sides

(1 \: to \:  \: 9)

add \: 1 \: on \: both \: sides

 answer \: ranges \: from \: (2 \: to \: 10)

so \: the \: value \: of \: k \: is \: 2

Similar questions