Math, asked by saraswatdivya2006, 11 months ago

Sin^2 x + cos^2 30 = 5/4,
Solve for x


Best answer will be marked as brainliest

Answers

Answered by sonabrainly
7

Answer:

Step-by-step explanation:

x + root 3/2 x root 3/2 = 5/4

x + 3/4 = 5/4

x = 5/4 - 3/4

x = 2/4 = 1/2

Answered by Sharad001
8

Question :-

 \bf \:  { \sin}^{2} x +  { \cos}^{2}30 =  \frac{5}{4}   \\  \bf \: find \: the \: value \: of \: x

Answer :-

 \longmapsto \bf \:  \:  x =  \pm \: 45

Solution :-

We have ,

 \longrightarrow \: \bf { \sin}^{2} x +  { \cos}^{2} 30 =  \frac{5}{4}  \\  \\  \longrightarrow \bf \:   { \sin}^{2} x +  {( \cos 30)}^{2}  =  \frac{5}{4}  \\  \because \:  \cos 30 =  \frac{ \sqrt{3} }{2}  \\  \\  \longrightarrow \bf \:  { \sin}^{2} x +  {  \bigg(\frac{ \sqrt{3} }{2} \bigg)}^{2}  =  \frac{5}{4}  \\  \\  \longrightarrow \bf \:  { \sin}^{2} x +  \frac{3}{4}  =  \frac{5}{4}  \\  \\  \: \longrightarrow \bf \:  { \sin}^{2} x =  \frac{5}{4}  -  \frac{3}{4}  \\  \\ \longrightarrow \bf \:  { \sin}^{2} x =  \frac{ 5 - 3}{4}  \\  \\ \longrightarrow \bf \:  { \sin}^{2} x =  \frac{2}{4}  \\  \\  \longrightarrow \bf { \sin}^{2} x =  \frac{1}{2}  \\  \\  \sf \: taking \:  \:  \sqrt{}  \: on \: both \: sides \\  \\ \longrightarrow \bf \sqrt{ {( \sin x)}^{2} }  =  \pm \frac{1}{ \sqrt{2} }  \\  \:  \\ \longrightarrow \bf \:  \sin x =  \pm \:  \sin 45  \\  \\  \bf \:  \: hence \:  \:  \boxed{ \bf \: x = \pm 45 \: \:  } \:

Verification :-

 \star \bf \:  \: if  \:  x =  + 45 \\  \\  \to \bf { \sin}^{2} 45 +  { \cos}^{2} 30 =  \frac{5}{4}  \\  \\  \to \bf \:  \frac{1}{2}  +  \frac{3}{4}  =  \frac{5}{4}  \\  \\  \to \bf \:  \frac{5}{4}  =  \frac{5}{4}  \\  \\  \star \bf\: if \: x =  - 45 \\  \\  \to \bf \: { \sin}^{2} ( - 45) +  { \cos}^{2} 30 =  \frac{5}{4}  \\  \\  \to \:  \frac{1}{2}  +  \frac{3}{4}  =  \frac{5}{4}  \\  \\  \to \bf \:  \frac{5}{4}  =  \frac{5}{4}

Hence verified .

Similar questions