Math, asked by Anonymous, 7 months ago

∫ ( sin^2 x cos^2 x / sin x cos x) dx

Answers

Answered by Anonymous
10

 \huge{ \underline{ \underline{ \mathfrak{ \blue{answer \:  :  - }}}}}

 \huge \sf \longmapsto I \:  =  \int \frac{ {sin}^{2}x \:  -  {cos}^{2}x  }{sin \: x \:  - cos \: x} dx \\  \\  \huge \sf \longmapsto I \:  =  \int \frac{(sin \: x \:  +  \: cos \: x)(sin \: x - cos \: x)}{sin \: x \:  - cos \: x}  \\  \\  \huge \sf \longmapsto I \:  =  \int(sin \: x \:  + cos \: x)dx \\  \\  \huge \sf \longmapsto I \:  =  \int \: sin \: xdx \:  +  \int \: cos \: xdx \\  \\  \huge \sf \longmapsto I \:  =   - cos \: x \:  + sin \: x + c \\  \\  \huge \sf \longmapsto I \:  =  sin \: x \:  - cos \: x \:  + c...

Answered by Stera
5

Answer

sin²x/2 + c

\bf\large\underline{Solution}

  \rm\longrightarrow  \int \dfrac{ \sin ^{2} x \cos {}^{2}x  }{ \sin x\cos x } dx\\  \\  \rm\longrightarrow  \int \dfrac{(\sin x \cos {x})^{2}  }{ \sin x \cos x }  dx\\  \\  \rm\longrightarrow  \int   \sin x \cos x  dx

Let us consider ,

\rm\implies t = \sin x \\\\ \rm\implies dt = d(\sin x) \\\\ \rm\implies dt = \cos x dx \dashrightarrow (1)

Thus we have ,

 \rm\longrightarrow  \int  \sin x \cos xdx  \\  \\   \rm\longrightarrow  \int tdt  \\  \\  \rm\longrightarrow   \dfrac{ {t}^{2} }{2}  + c \\  \\  \rm\longrightarrow \dfrac{ \sin {}^{2}  x }{2}  + c

Similar questions