Math, asked by sashdi1340, 11 months ago

sin^{2} y + cos xy = k dy/dx ज्ञात कीजिए

Answers

Answered by Sharad001
145

Question :-

 \rm if  \: \sf  { \sin}^{2} y +  \cos(xy) = k \: then \: find \:  \frac{dy}{dx}  \\

Answer :-

\to  \boxed{\sf \frac{dy}{dx}  =  \frac{y \sin(xy)}{ \sin2y - x \sin(xy)} } \:

Solution :-

we have,

 \mapsto \:  \sf  { \sin}^{2} y +  \cos(xy) = k \: \:  \\  \\ \rm \pink{ differentiate \: it \: with \: respect \: to \: x} \\  \\  \to \sf \frac{d}{dx}  { \sin}^{2} y +  \frac{d}{dx}  \cos(xy) =  \frac{d}{dx} k \\  \\ \boxed{  \because \sf  \frac{d}{dx}  (constant)  = 0 \: and \:  \frac{d}{dx}  {x}^{n}  = n {x}^{n - 1} } \\  \\ \boxed{  \sf\because \frac{d}{dx} \cos x =  -  \sin x }  \\  \\   \to \sf 2 \sin y \frac{d}{dx} ( \sin y)  - \sin(xy) \frac{d}{dx} xy = 0 \\  \\ \sf  \: here \: we \: use \: chain \: rule \\   \sf that \: is \\ \boxed{  \to \sf \frac{d}{dx} xy = x \frac{d}{dx}  y+ y \frac{d}{dx} x} \\  \\ \sf hence \\  \to \sf 2 \sin y \cos y \frac{dy}{dx}   -  \sin(xy) \{x \frac{dy}{dx}  + y \} = 0 \\  \\    \boxed{\because \sf 2 \sin \theta \cos \theta =  \sin2 \theta} \\  \\  \to \sf  \sin2y \frac{dy}{dx}  - x \sin(xy) \frac{dy}{dx}  - y \sin(xy) = 0 \\  \\  \to \sf  \frac{dy}{dx}  \:  \{ \sin2y - x \sin(xy) \} =  y \sin (xy) \\  \\  \to  \boxed{\sf \frac{dy}{dx}  =  \frac{y \sin(xy)}{ \sin2y - x \sin(xy)} }

Answered by amitnrw
1

(dy/dx) =  ySinxy /(Sin2y - xSinxy)   यदि Sin²y   + Cosxy  = k

Step-by-step explanation:

dy/dx ज्ञात कीजिए

Sin²y   + Cosxy  = k

=> 2Siny (cosy) dy/dx   - Sinxy* (xdy/dx  + y)  = 0

=> (dy/dx)(2Sinycosy - xSinxy)  = ySinxy

=>  (dy/dx) =  ySinxy /(2Sinycosy - xSinxy)

=>  (dy/dx) =  ySinxy /(Sin2y - xSinxy)

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Similar questions