sin 20 into sin 40 into sin 80 equal to root 3 by 8
Answers
Answer:sin20*sin40*sin80=√3/2
Step-by-step explanation:
Sin20*sin40*sin80
Sin20*sin(60-20)*sin(60+20)
formula:sin(a-b)*sin(a+b)=sin^2(a)-sin^2(b)
sin20[sin^2(60)-sin^2(20)]
sin20[3/4-sin^2(20)]
(sin(20))/4[3-4sin^2(20)]
3sin(20)-4sin^3(20)
formula:3sin(A)-4sin^3(A)=sin3A
sin3(20)
sin60=√3/2
To prove →
sin20° sin 40° sin80° = √3/8 .
Solution→ by method 1st
Taking LHS
(sin20° sin40°) sin80°
Multiple and divide the numerator and denominator by 2 .
As we know that 2 sinA sinB = cos ( A -B) - cos ( A + B) So applying this Formula we got:
1/2[cos ( 20° - 40° ) - cos ( 20°+ 40° ) ]sin 80°
1/2 [ cos (-20°) - cos ( 60° )] sin 80°
As we know that cos(-A) = cos A .So ,
1/2 ( cos 20° - cos 60°) sin 80°
1/2 ( cos20°sin 80° - cos60° sin 80°)
cos 60° = 1/2
1/2( cos 20° sin 80° - 1/2 sin 80° )
Again multiple and divide the numerator and denominator by 2:
1/4 ( 2 sin80° cos20° - sin80°)
As we know that 2sinAcosB = sin( A+B)+ sin ( A -B)
1/4 [ sin(80+20) +sin(80-20) - sin 80°]
1/4(sin 100° + sin 60° - sin 80° )
sin60° = √3/2
1/4[sin( 180°-80°)+ √3/4 - sin80°]
1/4 ( sin80° - sin 80° +√3/2)
sin80° cancelled out by - sin80°
1/4(√3/2)
√3/8 = RHS
here we can also use another method.
Solution→ by method 2nd
sin A sin (60-A) sin (60+A ) = sin (3A)/4
So here we can write LHS in above form:
sin20° sin(60°-20°)sin(60°+20°)
Now using the above mentioned formula
sin (20°×3)/4
sin 60°/4
(√3/2)/4
√3/8 = RHS
hence proved.