Math, asked by yaswanth3846, 6 hours ago

sin 20° - sin 100° + sin 140°

Answers

Answered by thanu151417
0

Answer:

Sin (20-100-140)=sin 60

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Trigonometric expression is

\rm :\longmapsto\:sin20\degree  - sin100\degree  + sin140\degree

can be re-arranged as

\rm \:  =  \:( sin140\degree + sin20\degree )  - sin100\degree

We know,

 \purple{\boxed{\tt{ sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

So, using this, we get

\rm \:  =  \: 2sin\bigg( \dfrac{140\degree  + 20\degree }{2} \bigg)cos\bigg( \dfrac{140\degree  - 20\degree }{2} \bigg) - sin100\degree

\rm \:  =  \: 2sin\bigg( \dfrac{160\degree }{2} \bigg)cos\bigg( \dfrac{120\degree }{2} \bigg)  - sin100\degree

\rm \:  =  \: 2sin80\degree cos60\degree  - sin100\degree

\rm \:  =  \: 2sin80\degree  \times \dfrac{1}{2}   - sin100\degree

\rm \:  =  \: sin80\degree  - sin100\degree

\rm \:  =  \: sin(180\degree  - 100\degree ) - sin100\degree

We know,

 \purple{\boxed{\tt{ \:  \:  sin(180\degree  - x) \:  =  \: sinx \:  \: }}}

So, using this, we get

\rm \:  =  \: sin100\degree  - sin100\degree

\rm \:  =  \: 0

Hence,

 \purple{\boxed{\tt{  \:  \:  \: sin20\degree  - sin100\degree  + sin140\degree  = 0 \:  \:  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

 \purple{\boxed{\tt{ sinx - siny = 2cos\bigg( \dfrac{x + y}{2} \bigg)sin\bigg( \dfrac{x - y}{2} \bigg)}}}

 \purple{\boxed{\tt{ cosx + cosy = 2cos\bigg( \dfrac{x + y}{2} \bigg)cos\bigg( \dfrac{x - y}{2} \bigg)}}}

 \purple{\boxed{\tt{ cosx - cosy = -  2sin\bigg( \dfrac{x + y}{2} \bigg)sin\bigg( \dfrac{x - y}{2} \bigg)}}}

Similar questions