Math, asked by bhumireddynagmailcom, 1 month ago

sin 20°.sin40°.sin80° = √3/8​

Answers

Answered by jaiyadavyadav129
1

Answer:

Consider LHS

sin 20 × sin 40 × sin60 × sin80

Sin Values

sin 0° = √(0/4) = 0

sin 30° = √(1/4) = ½

sin 45° = √(2/4) = 1/√2

sin 60° = √3/4 = √3/2

sin 90° = √(4/4) = 1

LHS = sin60 [sin20 × sin40 × sin80]

LHS = √3/2[sin20 × sin(60 – 20) × sin(60 + 20)]

LHS = √3/2[sin 3(20)/4]

LHS = √3/2[sin 60/4]

LHS = √3/2[√3/2 × 4]

LHS = √3/2 × √3/8

LHS = 3/16

∴ LHS = RHS

Answered by sharanyalanka7
2

Step-by-step explanation:

To Prove :-

sin20°.sin40°.sin80° = \sf\dfrac{\sqrt{3}}{8}

Solution :-

Taking L.H.S :-

sin20°.sin40°.sin80°

Multiplying and Dividing with '2' :-

= \sf\dfrac{2}{2}\times sin20°.sin40°.sin80°

=

 \dfrac{1}{2}(2 \times sin20 \degree \times sin40 \degree \times (sin80 \degree))

We know that :-

cos(A-B)-cos(A+B) = 2sinAsinB

 =  \dfrac{1}{2}((cos(40 \degree - 20 \degree) - cos(40 \degree + 20 \degree) ) \times sin80 \degree)

  = \dfrac{1}{2} ((cos20 \degree - cos60 \degree) \times sin80 \degree)

 = \dfrac{1}{2} ((cos20 \degree -  \dfrac{1}{2} ) \times sin80 \degree)

 =  \dfrac{1}{2}  \bigg( \dfrac{2cos20 \degree - 1}{2} \bigg) \times sin80 \degree

 = \dfrac{1}{4}((2cos20 \degree  - 1) \times sin80 \degree)

 =  \dfrac{1}{4}((2cos20 \degree \times sin80 \degree ) - sin80 \degree)

we know that :-

sin(A+B)-sin(A-B) = 2cosAsinB

 =  \dfrac{1}{4}(sin100 \degree  +  sin60 \degree - sin80 \degree )

\dfrac{1}{4}(sin100 \degree   -  sin80 \degree +  sin60 \degree  )

 =  \dfrac{1}{4}((2cos90 \degree \times sin20 \degree) +  \dfrac{ \sqrt{3} }{2}  )

 =  \dfrac{1}{4}  \times  \dfrac{ \sqrt{3} }{2}

Since , cos90° = 0

 =  \dfrac{ \sqrt{3} }{8}

Similar questions