sin 20°.sin40°.sin80° = √3/8
Answers
Answered by
1
Answer:
Consider LHS
sin 20 × sin 40 × sin60 × sin80
Sin Values
sin 0° = √(0/4) = 0
sin 30° = √(1/4) = ½
sin 45° = √(2/4) = 1/√2
sin 60° = √3/4 = √3/2
sin 90° = √(4/4) = 1
LHS = sin60 [sin20 × sin40 × sin80]
LHS = √3/2[sin20 × sin(60 – 20) × sin(60 + 20)]
LHS = √3/2[sin 3(20)/4]
LHS = √3/2[sin 60/4]
LHS = √3/2[√3/2 × 4]
LHS = √3/2 × √3/8
LHS = 3/16
∴ LHS = RHS
Answered by
2
Step-by-step explanation:
To Prove :-
sin20°.sin40°.sin80° =
Solution :-
Taking L.H.S :-
sin20°.sin40°.sin80°
Multiplying and Dividing with '2' :-
= sin20°.sin40°.sin80°
=
We know that :-
cos(A-B)-cos(A+B) = 2sinAsinB
we know that :-
sin(A+B)-sin(A-B) = 2cosAsinB
Since , cos90° = 0
Similar questions