Math, asked by bhaveshaitha007, 1 month ago

sin⁡24∘+cos⁡6∘= what​

Answers

Answered by Anonymous
0

Answer:

We know that,

(

1

)

sin

(

90

x

)

=

sin

(

π

2

x

)

=

cos

x

(

2

)

cos

(

90

x

)

=

cos

(

π

2

x

)

=

sin

x

(

3

)

sin

A

cos

B

cos

A

sin

B

=

sin

(

A

B

)

We take,

X

=

sin

24

°

cos

6

°

sin

6

°

sin

66

°

sin

21

°

cos

39

°

cos

51

°

sin

69

°

using

:

(

1

)

and

(

2

)

sin

66

=

sin

(

90

24

)

=

cos

24

cos

51

=

cos

(

90

39

)

=

sin

39

sin

69

=

sin

(

90

21

)

=

cos

21

So,

X

=

sin

24

°

cos

6

°

sin

6

°

cos

24

°

sin

21

°

cos

39

°

sin

39

°

cos

21

°

X

=

sin

(

24

6

)

sin

(

21

39

)

...

[

A

p

p

l

y

(

3

)

]

X

=

sin

18

sin

(

18

)

X

=

(

sin

18

sin

18

)

...

[

sin

(

θ

)

=

sin

θ

]

X= 1

Answered by vaishaliingle485
1

Answer:

1

Explanation:

enter image source here

enter image source here

enter image source here

Step-by-step explanation:

Explanation:

We know that,

(

1

)

sin

(

90

x

)

=

sin

(

π

2

x

)

=

cos

x

(

2

)

cos

(

90

x

)

=

cos

(

π

2

x

)

=

sin

x

(

3

)

sin

A

cos

B

cos

A

sin

B

=

sin

(

A

B

)

We take,

X

=

sin

24

°

cos

6

°

sin

6

°

sin

66

°

sin

21

°

cos

39

°

cos

51

°

sin

69

°

using

:

(

1

)

and

(

2

)

sin

66

=

sin

(

90

24

)

=

cos

24

cos

51

=

cos

(

90

39

)

=

sin

39

sin

69

=

sin

(

90

21

)

=

cos

21

So,

X

=

sin

24

°

cos

6

°

sin

6

°

cos

24

°

sin

21

°

cos

39

°

sin

39

°

cos

21

°

X

=

sin

(

24

6

)

sin

(

21

39

)

...

[

A

p

p

l

y

(

3

)

]

X

=

sin

18

sin

(

18

)

X

=

(

sin

18

sin

18

)

...

[

sin

(

θ

)

=

sin

θ

]

X

=

1

Similar questions