sin (24x)
Show that cos x. cos 2x. cos 4x. cos 8 x =
if sin x 20.
24 sin x
Answers
Answered by
0
Answer:
∫ (sin x cos x cos 2x cos 4x cos 8x cos 16x)dx
multiplying and dividing by 2
2
1
∫ (2 sin x cos x cos 2x cos 4x cos 8x cos 16)dx
=
2
1
∫ (sin 2x cos 2x cos 4x cos 8x cos 16x)dx [∵ 2 sin x cos x = sin 2x]
multiplying and dividing by 2
=
4
1
∫(2 sin 2x cos 2x cos 4x cos 8x cos 16x)dx
=
4
1
∫ ( sin 4x cos 4x cos 8x cos 16x)dx
multiplying and dividing by 8
=
32
1
∫ (8 sin 4x cos 4x cos 8x cos 16x)dx
=
32
1
∫ (4 sin 8x cos 8x cos 16x)dx
=
32
1
∫ 2 sin 16x cos 16x dx
=
32
1
∫ sin 32x dx
=
32
1
×
32
(−cos32x)
+C
=
1024
−cos32+
+C
Step-by-step explanation:
thank you
Similar questions