Math, asked by swaraj060, 10 months ago

sin 28°54'÷sec 61°6'+cos 28°54'÷cosec 61°6'​

Answers

Answered by MaheswariS
16

\underline{\textsf{To find:}}

\textsf{The value of}

\mathsf{\dfrac{sin\,28^{\circ}54'}{sec\,61^{\circ}6'}+\dfrac{cos\,28^{\circ}54'}{cosec\,61^{\circ}6'}}

\underline{\textsf{Solution:}}

\textsf{Formula used:}

\boxed{\mathsf{sec\theta=cosec(90^{\circ}-\theta)}}

\boxed{\mathsf{cosec\theta=sec(90^{\circ}-\theta)}}

\boxed{\mathsf{sin^2A+cos^2A=1}}

\textsf{Consider,}

\mathsf{\dfrac{sin\,28^{\circ}54'}{sec\,61^{\circ}6'}+\dfrac{cos\,28^{\circ}54'}{cosec\,61^{\circ}6'}}

\mathsf{=\dfrac{sin\,28^{\circ}54'}{cosec\,28^{\circ}54'}+\dfrac{cos\,28^{\circ}54'}{sec\,28^{\circ}54'}}

\mathsf{=\dfrac{sin\,28^{\circ}54'}{\dfrac{1}{sin\,28^{\circ}54'}}+\dfrac{cos\,28^{\circ}54'}{\dfrac{1}{cos\,28^{\circ}54'}}}

\mathsf{=sin^228^{\circ}54'+cos^228^{\circ}54'}

\textsf{=1}

\implies\boxed{\mathsf{\dfrac{sin\,28^{\circ}54'}{sec\,61^{\circ}6'}+\dfrac{cos\,28^{\circ}54'}{cosec\,61^{\circ}6'}=1}}

Find more:

Sin theta sin 90 - theta minus cos theta cos 90 - theta is equal to zero prove

https://brainly.in/question/6171752

Solve without using trigonometric tables

(tan 20 / cot 70)+(cot 50 / tan 40 ) +((sin2 20 + sin2 70 )/ sin theta cos (90 - theta ) +cos theta sin (90 - theta)

https://brainly.in/question/8196799

Cos(90-theta)sec(90-theta)tan(theta)upon cosec(90-theta)sin(90-theta)cot(90-theta)+tan(90-theta)upon cot(theta) =2

https://brainly.in/question/4025386#

Answered by alialiya49472
1

sin 28°54'÷sec 61°6'+cos 28°54'÷cosec 61°6'

Attachments:
Similar questions