sin(2A+3B).cos(2A-3B)+cos(2A+3B).sin(2A-3B)= sin 4A prove that
Answers
Answered by
113
Given :
- sin(2A + 3B).cos(2A - 3B) + cos(2A + 3B).sin(2A - 3B)
To prove :
- sin(2A + 3B).cos(2A - 3B) + cos(2A + 3B).sin(2A - 3B) = sin4A
Proof :
Let's assume sin(2A + 3B) = R and cos(2A - 3B) = T
- As we know that
✒ sin(A + B) = sinA.cosB + cosA.sinB
From LHS
→ sin(2A + 3B).cos(2A - 3B) + cos(2A + 3B).sin(2A - 3B)
→ sinR.cosT + cosR.sinT (By assuming)
- According to the formula of sin(A+B)
→ sin(R + T)
- Put the value of "R" & "T"
→ sin[(2A + 3B) + (2A - 3B)]
→ sin(2A + 3B + 2A - 3B)
→ sin(2A + 2A + 3B - 3B)
→ sin4A = RHS
•°• LHS = RHS proved
Answered by
7
sin(2A+3B).cos(2A-3B)+cos(2A+3B).sin(2A-3B)
sin(2A + 3B + 2A - 3B)
sin4A
Similar questions