Math, asked by ddivya49, 3 months ago

sin(2A+3B).cos(2A-3B)+cos(2A+3B).sin(2A-3B)= sin 4A prove that

Answers

Answered by Anonymous
113

Given :

  • sin(2A + 3B).cos(2A - 3B) + cos(2A + 3B).sin(2A - 3B)

To prove :

  • sin(2A + 3B).cos(2A - 3B) + cos(2A + 3B).sin(2A - 3B) = sin4A

Proof :

Let's assume sin(2A + 3B) = R and cos(2A - 3B) = T

  • As we know that

✒ sin(A + B) = sinA.cosB + cosA.sinB

From LHS

→ sin(2A + 3B).cos(2A - 3B) + cos(2A + 3B).sin(2A - 3B)

→ sinR.cosT + cosR.sinT (By assuming)

  • According to the formula of sin(A+B)

→ sin(R + T)

  • Put the value of "R" & "T"

→ sin[(2A + 3B) + (2A - 3B)]

→ sin(2A + 3B + 2A - 3B)

→ sin(2A + 2A + 3B - 3B)

→ sin4A = RHS

° LHS = RHS proved

Answered by Anonymous
7

\bf SOLUTION

sin(2A+3B).cos(2A-3B)+cos(2A+3B).sin(2A-3B)

sin(2A + 3B + 2A - 3B)

sin4A

Similar questions