sin^2a×cos^2b+ cos^2a×sin^2b+sin^2a×sin^2b+cos^2a×cos^2b
Answers
Answered by
0
Answer:
The given equation is:
sin^2Acos^2B-cos^2Asin^2B=sin^2A-sin^2Bsin
2
Acos
2
B−cos
2
Asin
2
B=sin
2
A−sin
2
B
Taking the left hand side of the above equation, we get
sin^2Acos^2B-cos^2Asin^2Bsin
2
Acos
2
B−cos
2
Asin
2
B
Substituting cos^2B=1-sin^2Bcos
2
B=1−sin
2
B , we get
=sin^2A(1-sin^2B)-(1-sin^2A)sin^2Bsin
2
A(1−sin
2
B)−(1−sin
2
A)sin
2
B
=sin^2A-sin^2Asin^2B-sin^2B+sin^2Asin^2Bsin
2
A−sin
2
Asin
2
B−sin
2
B+sin
2
Asin
2
B
=sin^2A-sin^2Bsin
2
A−sin
2
B
=RHS
Hence proved.
Similar questions
Geography,
5 months ago
Social Sciences,
5 months ago
Accountancy,
10 months ago
Social Sciences,
10 months ago
English,
1 year ago
Geography,
1 year ago
Math,
1 year ago