sin 2A = cos (go-2A)
take
A =
18
Please solve this example
Answers
Answered by
1
Answer:
Sin2a=cos(a-18)
Sin2a=cos(a-18)[SinA=cos (90-A)]
Sin2a=cos(a-18)[SinA=cos (90-A)]Cos(90-2a)=cos (a-18)
Sin2a=cos(a-18)[SinA=cos (90-A)]Cos(90-2a)=cos (a-18)90-2a=a-18
Sin2a=cos(a-18)[SinA=cos (90-A)]Cos(90-2a)=cos (a-18)90-2a=a-1890+18=a+2a
Sin2a=cos(a-18)[SinA=cos (90-A)]Cos(90-2a)=cos (a-18)90-2a=a-1890+18=a+2a108=3a
Sin2a=cos(a-18)[SinA=cos (90-A)]Cos(90-2a)=cos (a-18)90-2a=a-1890+18=a+2a108=3aa=108/3
Sin2a=cos(a-18)[SinA=cos (90-A)]Cos(90-2a)=cos (a-18)90-2a=a-1890+18=a+2a108=3aa=108/3a=36°
Step-by-step explanation:
Hope it helps you follow me guys for more answers and help.
Answered by
2
Step-by-step explanation:
Sin 2A = cos (90-2A )
sin 2A = sin 2A
hence proved
Similar questions