Math, asked by manojanivekar, 2 months ago

Sin^2A=
it's from trigonometry

Answers

Answered by sreedivi98
1

Answer:

2sinAcosA

Step-by-step explanation:

sinAcosA+cosAsinA

2(sinAcosA)

2sinA√[1-cos^2A)

Answered by Anonymous
79

❒Given to find the value of :-

sin2A

❒ Solution:-

sin2A can be wrtitten as sin(A+A)

sin(A+A) in the form of sin(A+B)

As we know that ,

\green\bigstar\green{\boxed{sin(A+B) = sinAcosB + sinB cosA}}

Now we shall expand sin(A+A)

sin(A+ A) = sinA cosA + sinA cosA

sin(A+A) = 2 sinA cosA

So, the value of sin2A = 2sinAcosA

❒❒❒❒❒❒❒❒❒❒❒❒❒❒❒

_____________________

❒Know more formulae:-

❒Multiple angles :-

sin2A = 2sinAcosA

sin2A =  \dfrac{2tanA}{1 + tan {}^{2}A }

cos2A = cos {}^{2} A - sin { }^{2} A

cos2A= 2cos {}^{2} A - 1

cos2A = 1 - 2in {}^{2} A

cos2A =  \dfrac{1 - tan {}^{2} A}{1 + tan {}^{2}A }

tan2A =  \dfrac{2tanA}{1 - tan {}^{2}A }

cot2A =  \dfrac{cot {}^{2} A - 1}{2cotA}

sin3A = 3sinA - 4sin {}^{3} A

cos3A = 4cos {}^{3} A - 3cosA

tan3A =  \dfrac{3tanA - tan {}^{3}A }{1 - 3tan {}^{2} A}

❒Compound angles

sin(A+B)= sinAcosB + sinBcosA

sin(A-B) = sinAcosB- sinBcosA

cos(A+B) = cosAcosB - sinAsinB

cos(A-B) = cosAcosB + sinAsinB

tan(A+B) = \dfrac{tanA+tanB}{1-tanAtanB}

tan(A-B) = \dfrac{tanA-tanB}{1+tanAtanB}

cot(A+B) = \dfrac{cotB cotA -1}{cotB + cotA}

 cot(A-B) = \dfrac{cotB cotA + 1}{cotB-cotA}

Similar questions