Math, asked by bpushkal, 11 months ago

sin 2A + sin 2B + sin (A+B) = 4 cos A cos B sin(A+B)

Answers

Answered by rishu6845
7

Answer:

To prove---> There is a mistake in

---------------

question i think it is like this

Sin2A + Sin2B +Sin2(A+B)=4CosA CosB

Sin(A+B)

Proof---> LHS=

----------

Sin 2A + Sin 2B +Sin 2(A + B)

We have a formula

Sinx + Siny= 2 Sin(x+y/2) Cos (x-y/2)

applying it here

= 2 Sin (2A + 2B/2) Cos (2A - 2B/2)

+Sin2(A+B)

We have a formula

Sin 2θ = 2 Sinθ Cosθ

Applying it here

= 2 Sin(A + B) Cos (A - B) + 2Sin (A+B)

Cos(A+B)

= 2 Sin (A + B){Cos(A-B) + Cos (A+B)}

We have a formula

cosx + Cosy = 2 Cos(x+y/2) Cos(x-y/2)

Here

x= A+B y= A-B

x+y = A+B + A-B

= 2A

x-y = A+B -(A-B)

= A+B -A+B

= 2B

Now returning to original problem

= 2 Sin(A+B) {2 Cos (2A/2) Cos (2B/2)}

= 2 Sin(A+B) (2 Cos A Cos B )

= 4 CosA Cos B Sin (A + B) =RHS

Similar questions