Sin 2a= x sin 2b prove that tan(a+b)/tan(a-b) = x+1/x-1
Answers
Answer:
this question is actually very long so forgive me if you cant understand
Step-by-step explanation:
sin2A=2tanA/1+tan²A
sin2B=2tanB/1+tan²B
cross multiply in the given equation after substituting the values
2tanA*(1+tan²B)/1+tan²A(2tanB)=x
x=2tanA+2tan²BtanA/2tanB+2tan²AtanB
now find values of x+1 and x-1 separately
x+1=2tanA+2tan²BtanA+2tanB+tan²AtanB (I am not writing denominator in x+1and x-1 because it will be cancelled off anyway when we divide x+1/x-1)
x-1=2tanA+2tan²BtanA-2tanB-tan²AtanB
x+1/x-1=2(tan +tanB)+2(tan²AtanB+tan²BtanA)/2(tanA-tanB)+2(tan²AtanB-tan²BtanA)
=>tanA+tanB(1+tanAtanB)/tanA-tanB(1+tanAtanB)
now if you remember the formula the above would be equated to
tan(A+B)/tan(A-B)
if you dont understand try solving backwords from above formula of
tan(A+B)/tan(A-B)
Happy to help my friend anyway do you have exam tomorrow :)
Answer:
Step-by-step explanation:
sin(a+b) cos(a-b) /cos(a+b) sin(a-b)
=x+1/x-1
By componando divindo
sin(a+b) cos(a-b) +cos(a+b) sin(a-b) /
sin(a+b) cos(a-b) - cos(a+b) sin(a-b) =x+1-1+x/x-x+1+1
Sin(a+b+a-b)/sin(a+b-a+b)=2x/2
Sin2a/sin2b=x/1
Sin2a=2sin2b
By reviseing it we can proof it