Math, asked by deepanjalipande67, 1 year ago

sin^2alpha / 1 + cot^2alpha + tan^2alpha / (1 + tan^2alpha)^2 + cos^2alpha = ?​

Answers

Answered by pulakmath007
30

SOLUTION

TO DETERMINE

 \displaystyle \sf{  \frac{ { \sin}^{2}  \alpha }{1 +  { \cot}^{2} \alpha  }  + \frac{ { \tan}^{2}  \alpha }{{(1 +  { \tan}^{2} \alpha)}^{2}   }  +  { \cos}^{2}  \alpha  \: }

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric identity that

1. \:  \:  \:   { \sin}^{2}  \alpha   +   { \cos}^{2}  \alpha = 1

2. \:  \:  \:  \sf{  1 +  { \tan}^{2}  \alpha    = { \sec}^{2}  \alpha }

3. \:  \:   \: \sf{ 1 +  { \cot}^{2}  \alpha    =  { \csc}^{2}  \alpha}

EVALUATION

 \displaystyle \sf{  \frac{ { \sin}^{2}  \alpha }{1 +  { \cot}^{2} \alpha  }  + \frac{ { \tan}^{2}  \alpha }{{(1 +  { \tan}^{2} \alpha)}^{2}   }  +  { \cos}^{2}  \alpha  \: }

 =  \displaystyle \sf{  \frac{ { \sin}^{2}  \alpha }{ { \csc}^{2} \alpha  }  + \frac{ { \tan}^{2}  \alpha }{{ ( { \sec}^{2} \alpha)}^{2}   }  +  { \cos}^{2}  \alpha  \: }

 =  \displaystyle \sf{  \frac{ { \sin}^{2}  \alpha }{ \frac{1}{ { \sin}^{2}  \alpha }   }  + \frac{ { \sin}^{2}  \alpha }{  { \cos}^{2}  \alpha }  \times  {(  { \cos}^{2}  \alpha)}^{2}  +  { \cos}^{2}  \alpha  \: }

 =  \displaystyle \sf{   { \sin}^{4}  \alpha   + ({ \sin}^{2}  \alpha  \times  { \cos}^{2}  \alpha ) +  { \cos}^{2}  \alpha  \: }

 =  \displaystyle \sf{ { \sin}^{2}  \alpha(  { \sin}^{2}  \alpha   +   { \cos}^{2}  \alpha ) +  { \cos}^{2}  \alpha  \: }

 =  \sf{ ({ \sin}^{2}  \alpha \times 1)   +   { \cos}^{2}  \alpha  }

 =  \displaystyle \sf{ { \sin}^{2}  \alpha+  { \cos}^{2}  \alpha  \: }

 = 1

Note :

In the above Solution csc means cosec

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. find the value of

(1+cos18)(1+cos54)(1+cos126)(1+cos162)

https://brainly.in/question/22916202

2. If cosθ+secθ=√2,

find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

Answered by varshitha957gmailcom
3

Step-by-step explanation:

I hope this may helps you

Attachments:
Similar questions