Math, asked by sumitpari2007, 1 month ago

sin 2B = 2 sin B is true when B is equal to​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:sin2B = 2sinB

can be rewritten as

\rm :\longmapsto\:sin2B - 2sinB = 0

We know,

\red{ \boxed{ \sf{ \:sin2x = 2sinx \: cosx}}}

So, using this, we get

\rm :\longmapsto\:2 \: sinB \: cosB \:  -  \: sinB \:  =  \: 0

\rm :\longmapsto\:sinB(2cosB - 1) = 0

\bf :\longmapsto\:sinB = 0 \:  \:  \: or \:  \:  \: cosB = \dfrac{1}{2}

Case :- 1

\rm :\longmapsto\:sinB = 0

\bf\implies \:B \:  =  \: n\pi \:  \:  \forall \: n \:  \in \: Z

Case :- 2

\rm :\longmapsto\:cosB = \dfrac{1}{2}

\rm :\longmapsto\:cosB = cos\dfrac{\pi}{3}

\bf\implies \:B = 2n\pi \:  \pm \: \dfrac{\pi}{3} \: \:  \forall \: n \:  \in \: Z

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi \:  \forall \: n \:  \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\:  \forall \: n \:  \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\:  \forall \: n \:  \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y\:  \forall \: n \:  \in \: Z \\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\:  \forall \: n \:  \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \:  \forall \: n \:  \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions