Math, asked by salvadormiranda2509, 4 months ago

sin π+2cos π+3sin 3π/2+4 cos 3π/2 -5sec π -6cosec 3π/2 evaluate value​

Answers

Answered by dsah9628
19

Step-by-step explanation:

Here,

sin π + 2cos π + 3sin 3π/2 + 4 cos 3π/2 - 5sec π - 6cosec 3π/2

= 0 + 2×(-1) + 3×(-1) + 4×0 - 5×(-1) - 6×(-1)

= 0 - 2 - 3 + 0 + 5 + 6

= 11-5

= 6

Answered by ajajit9217
4

Answer:

sin π +2 cos π + 3 sin \frac{3\pi}{2} + 4 cos  \frac{3\pi}{2} - 5 sec π - 6 cosec  \frac{3\pi}{2} = 6

Step-by-step explanation:

Given: sin π +2 cos π + 3 sin \frac{3\pi}{2} + 4 cos  \frac{3\pi}{2} - 5 sec π - 6 cosec  \frac{3\pi}{2}

We know the values of standard angles,

Therefore, sin π = 0

                 cos π = - 1

                 sin \frac{3\pi}{2}  = - 1

                cos  \frac{3\pi}{2} = 0

Therefore,

sin π +2 cos π + 3 sin \frac{3\pi}{2} + 4 cos  \frac{3\pi}{2} - 5 sec π - 6 cosec  \frac{3\pi}{2}

We know that sec \theta = \frac{1}{cos \theta}

and cosec \theta = \frac{1}{sin \theta}

= sin π +2 cos π + 3 sin \frac{3\pi}{2} + 4 cos  \frac{3\pi}{2} - 5 \frac{1}{cos \pi} - 6 \frac{1}{sin\frac{3\pi}{2}}

Substituting the values, we get,

= 0 + 2 (-1) + 3 (-1) + 4 (0) - 5 (\frac{1}{-1}) - 6 (\frac{1}{-1})

= 0 - 2 - 3 + 0 + 5 + 6

= 6

Therefore,

sin π +2 cos π + 3 sin \frac{3\pi}{2} + 4 cos  \frac{3\pi}{2} - 5 sec π - 6 cosec  \frac{3\pi}{2} = 6

Similar questions