(sin^2Q/cosQ+1)-(sin^2Q/cosQ-1)
Attachments:
Answers
Answered by
1
((2sinQcosQ / cosQ) +1 ) - ((2 sinQcosQ / cost ) - 1)
= 2sinQ + 1 - 2sinQ + 1 = 2
= 2sinQ + 1 - 2sinQ + 1 = 2
Denita11:
can u pls tell a step before this one
Answered by
4
Hey there !!!!!
=sin²θ/cosθ+1 -sin²θ/cosθ-1-----Equation 1
We know that sin²θ+cos²θ =1
So, sin²θ=1-cos²θ and cos²θ=1-sin²θ
Substituting these in equation 1
=(sin²θ/cosθ+1) -(sin²θ/cosθ-1)
=(1-cos²θ/1+cosθ)-(1-cos²θ/cosθ-1)---- Equation 2
Now using a²-b²=(a+b)(a-b) in equation 2
=(1+cosθ)(1-cosθ)/1+cosθ - (1-cosθ)(1+cosθ)/-(1-cosθ)
=1-cosθ-(-1+cosθ)
=1-cosθ+1-cosθ
=2
Hope this helped you...................
=sin²θ/cosθ+1 -sin²θ/cosθ-1-----Equation 1
We know that sin²θ+cos²θ =1
So, sin²θ=1-cos²θ and cos²θ=1-sin²θ
Substituting these in equation 1
=(sin²θ/cosθ+1) -(sin²θ/cosθ-1)
=(1-cos²θ/1+cosθ)-(1-cos²θ/cosθ-1)---- Equation 2
Now using a²-b²=(a+b)(a-b) in equation 2
=(1+cosθ)(1-cosθ)/1+cosθ - (1-cosθ)(1+cosθ)/-(1-cosθ)
=1-cosθ-(-1+cosθ)
=1-cosθ+1-cosθ
=2
Hope this helped you...................
Similar questions