sin 2t×cos3t how to solve this one
Attachments:
Answers
Answered by
10
Use trigonometric formulas:
cosu·sinv = 0.5( sin(u + v) - sin(u - v)]
sinu ·sinv = 0.5 ( cos(u - v) - cos(u + v)]
Then the first function
cos(3t)·sin(2t) = 0.5 ( sin(5t) - sin(t) )
Now take Laplace transform
L[cos(3t)·sin(2t)] = 0.5L[sin(5t) - sin(t)] = 0.5 L[sin(5t)] - 0.5L[sin(t)] =
= 0.5 · 5/(s²+5²) - 0.5 ·1/(s² + 1²) = 5/[2(s²+25)] - 1/[2(s² + 1)]
cosu·sinv = 0.5( sin(u + v) - sin(u - v)]
sinu ·sinv = 0.5 ( cos(u - v) - cos(u + v)]
Then the first function
cos(3t)·sin(2t) = 0.5 ( sin(5t) - sin(t) )
Now take Laplace transform
L[cos(3t)·sin(2t)] = 0.5L[sin(5t) - sin(t)] = 0.5 L[sin(5t)] - 0.5L[sin(t)] =
= 0.5 · 5/(s²+5²) - 0.5 ·1/(s² + 1²) = 5/[2(s²+25)] - 1/[2(s² + 1)]
Answered by
14
Answer:
Step-by-step explanation:
sin2t cos3t
By first solving trigonometrically:
=1/2(sin (2t+5t) + sin(2t-5t))
(As, sinxcosy=1/2sin(x+y) + sin(x-y))
=1/2( sin5t - sint)
Now, apply laplacian formulas
=1/2(5/s²+25 - 1/s²+1)
(As, sinat=a/s²+a²)
On further solving, by taking LCM
=1/2*5s²+5-s²-25/(s²+25)(s²+1) or
=4s²-20/2*(s²+25)(s²+1) or
=4s²-10/(s²+25)(s²+1)
Done.
Similar questions