Math, asked by om684878, 1 year ago

sin[2tan inverse √1-x/1+x]= √1-x²​

Answers

Answered by aadi7571
25

i hope this will help you

Attachments:

om684878: thanks bro
aadi7571: it's my pleasure :-)
Answered by harendrachoubay
4

\sin(2\tan^{1} \dfrac{\sqrt{1-x}}{\sqrt{1+x}})=\sqrt{1-x^{2}}, proved.

Step-by-step explanation:

L.H.S=\sin(2\tan^{1} \dfrac{\sqrt{1-x}}{\sqrt{1+x}})

Put x=\cos 2A

=\sin(2\tan^{1} \dfrac{\sqrt{1-\cos A}}{\sqrt{1+\cos A}})

=\sin(2\tan^{-1} \sqrt{{\dfrac{2\sin^2 A}{2\cos^2 A}}} )

=\sin(2\tan^{-1} \sqrt{{\dfrac{2\sin^2 A}{2\cos^2 A}}})

=\sin(2\tan^{-1} \sqrt{{\tan^2 A}})

=\sin 2A

\sin 2A=\sqrt{1-\cos^2 2A}

\sin 2A=\sqrt{1-x^{2}}

=R.H.S, proved.

Hence, \sin(2\tan^{1} \dfrac{\sqrt{1-x}}{\sqrt{1+x}})=\sqrt{1-x^{2}}, proved.

Similar questions