(sin^2theta+cos^2theta)
Answers
Answered by
0
Answer:
2sin( theta) cos(theta)
Answered by
4
Solution :-
★ sin²θ + cos²θ = 1 ★
Reason :- It is first trigonometric identity
Proof :-
Let the base of ∆ be x
Let the height of the ∆ be y
Now , finding the hypotenuse of the ∆ using Pythagoras theorem
Hypotenuse² = Base² + Height²
Hypotenuse = x² + y²
Now, proving that sin²A + cos²A = 1
sinA = opposite/Hypotenuse
Squaring on both sides
sin²A = opposite²/Hypotenuse² = x²/x² + y²
cosA = adjacent/Hypotenuse
cos²A = adjacent²/Hypotenuse² = y²/x² + y²
Now, adding sin²A & cos²A
sin²A + cos²A = x²/x² + y² + y²/x² + y²
sin²A + cos²A = (x² + y²)/(x² + y²)
sin²A + cos²A = 1
Hence , proved !
Trigonometric identities :-
1st identity :- sin²A + cos²A = 1
2nd identity :- sec²A - tan²A = 1
3rd identity :- cosec²A - cot²A = 1
Similar questions