Math, asked by souravd8494, 1 year ago

Sin 2theta+cos theta+tan theta sin theta+cos3 theta =sec theta

Answers

Answered by dorri
5
<b><marquee>Here's your Answer</marquee></b>

By proving LHS=RHS

LHS

=> cos³∅ + cos∅ + sin²∅ + tan∅sin∅

=> cos⁴∅ + sin²∅+\frac{sin(theeta)}{cos(theeta)}×sin∅

=> cos⁴∅+sin²∅+sin²∅×\frac{1}{cos(theeta)}

=> cos⁴∅+sin⁴∅×\frac{1}{cos(theeta)}

=> (cos²∅+sin²∅)²×\frac{1}{cos(theeta)}

=> \frac{1}{cos(theeta)} = sec∅

Hence, sec∅=RHS

Hope it helps you :)


#{\red{\underline{Be Brainly}}}
Answered by chetanpawar290904
2

sin²θ . cosθ + tanθ . sinθ + cos³θ = secθ

LHS = sin²θ . cosθ + tanθ . sinθ + cos³θ

= (sin²θ . cosθ + cos³θ) + tanθ . sinθ

= cosθ (sin²θ + cos²θ) + sinθ . sinθ

cosθ

= cosθ + sin²θ

cosθ

= cos²θ + sin²θ

cosθ

{ sin²θ + cos²θ = 1 }

= 1

cosθ

= secθ [RHS]

LHS = RHS Hence Proved.

Similar questions