Sin 2theta+cos theta+tan theta sin theta+cos3 theta =sec theta
Answers
Answered by
5
By proving LHS=RHS
LHS
=> cos³∅ + cos∅ + sin²∅ + tan∅sin∅
=> cos⁴∅ + sin²∅+×sin∅
=> cos⁴∅+sin²∅+sin²∅×
=> cos⁴∅+sin⁴∅×
=> (cos²∅+sin²∅)²×
=> = sec∅
Hence, sec∅=RHS
Hope it helps you :)
#
Answered by
2
sin²θ . cosθ + tanθ . sinθ + cos³θ = secθ
LHS = sin²θ . cosθ + tanθ . sinθ + cos³θ
= (sin²θ . cosθ + cos³θ) + tanθ . sinθ
= cosθ (sin²θ + cos²θ) + sinθ . sinθ
cosθ
= cosθ + sin²θ
cosθ
= cos²θ + sin²θ
cosθ
{ ∵ sin²θ + cos²θ = 1 }
= 1
cosθ
= secθ [RHS]
LHS = RHS Hence Proved.
Similar questions