Math, asked by harshitshrama573, 1 year ago

Sin( 2x -20)= cos ( 2y+20), then tan (x+y )=?

Answers

Answered by mysticd
4

Answer:

 \red {Value \: of \: tan(x+y) } \green {= 1}

Step-by-step explanation:

 Given \: sin(2x-20) = cos (2y+20)

\implies sin(2x-20) = Sin [ 90-(2y+20)]

 \boxed { \pink { cos A = sin (90 - A) }}

 \implies 2x - 20 = 90 -(2y+20)

 \implies 2x - 20 = 90 - 2y -20

 \implies 2x + 2y = 90 - 20 + 20

 \implies 2(x + y) = 90

 \implies (x + y) = \frac{90}{2}

 \implies (x + y) = 45\degree

 \implies tan(x+y) = tan 45\degree

 \implies tan(x+y) = 1

Therefore.,

 \red {Value \: of \: tan(x+y) } \green {= 1}

•••♪

Similar questions