Math, asked by shamgreen25, 7 months ago

sin (3π/4 +x) + sin (3π/4-x) =√2 cos x​

Answers

Answered by Cosmique
8

To prove :

\red{\bullet}\sf{\;sin\left(\dfrac{3\;\pi}{4}+x\right)+sin\left(\dfrac{3\;\pi}{4}-x\right)=\sqrt{2}\;cos \;x}

Proof :

Taking LHS

\implies\sf{LHS=\;sin\left(\dfrac{3\;\pi}{4}+x\right)+sin\left(\dfrac{3\;\pi}{4}-x\right)}

Using trigonometric identities

sin (x + y) = sin x cos y + cos x sin y &

sin ( x - y) = sin x cos y - cos x sin y

\implies\sf{LHS=sin\dfrac{3\;\pi}{4}\;cos\;x + cos \dfrac{3\pi}{4}\;sin\;x+\left(sin\dfrac{3\;\pi}{4}\;cos\;x - cos \dfrac{3\pi}{4}\;sin\;x\right) }

\implies\sf{LHS=sin\dfrac{3\;\pi}{4}\;cos\;x + cos \dfrac{3\pi}{4}\;sin\;x+sin\dfrac{3\;\pi}{4}\;cos\;x - cos \dfrac{3\pi}{4}\;sin\;x}

\implies\sf{LHS=sin\dfrac{3\;\pi}{4}\;cos\;x+sin\dfrac{3\;\pi}{4}\;cos\;x }

\implies\sf{LHS=2\;sin\dfrac{3\;\pi}{4}\;cos\;x }

putting value of  \bf{sin\;\dfrac{3\;\pi}{4}} = \bf{\dfrac{1}{\sqrt{2}}}

\implies\sf{LHS=2\;\big(\dfrac{1}{\sqrt{2}}\big)\;cos\;x }

\implies\sf{LHS=\sqrt{2}\;cos\;x = RHS  }

PROVED.

Few more related Identities :

  • cos ( x + y ) = cos x cos y - sin x sin y
  • cos ( x - y ) = cos x cos y + sin x sin y
  • sin ( -x ) = - sin x
  • cos ( -x ) = cos x
  • cos 2 x = cos²x - sin²x
  • sin 2 x = 2 sin x cos x
Similar questions