Math, asked by sairisheek2012, 11 months ago


sin(3π-A)cos(A-π/2)tan(3π/2)÷cosec(13π/2+A)sec(3π+A)cot(A-π\2)​

Answers

Answered by amitnrw
4

Given : sin(3π-A)cos(A-π/2)tan(3π/2-A)÷cosec(13π/2+A)sec(3π+A)cot(A-π\2)​  

To Find : Simplify

Solution:

sin(3π-A) = Sin(2π+π-A) = Sin(π-A) = SinA

cos(A-π/2) = Cos(π/2 - A) = SinA

tan(3π/2-A) =  CotA  

cosec(13π/2+A) = cosec(π/2+A) = secA  

sec(3π+A ) = sec(π+A )  = -secA

cot(A-π\2)​ = -tanA

SinA . SinA .  CotA    / ( ( secA )(-secA )(-tanA)

= SinA cosA / sec²AtanA

=   CosAcosA. cos²A

=   Cos⁴A

Learn More:

{sin x - cos x}, π/4

https://brainly.in/question/15287996

If a= p sec + q tan n b= p tan +q sec find a2 - b2 - Brainly.in

https://brainly.in/question/8117620

Similar questions