Math, asked by akankshareddy89, 7 months ago

sin 3 theta = sin theta (2 cos 2 theta + 1​

Answers

Answered by rijjukhan44
1

Answer:

21-Jun-2018 · 1 answer

Please see the proof below. Explanation: We need. sin2θ=2sinθcosθ. cos2θ+sin2θ=1. cos2θ =1−2sin2θ. First calculate sin3θ. sin3θ=sin(2θ+θ). =sin2θcosθ+cos2θsinθ. =2sinθcos2θ+(1−2sin2θ)sinθ.

Please see the proof below Explanation: We need sin2θ=2sinθcosθ cos2θ+sin2θ=1 cos2θ=1−2sin2θ First calculate sin3θ sin3θ=sin(2θ+θ) ... More

Answered by naitikdewangans
0

We need

sin

2

θ

=

2

sin

θ

cos

θ

cos

2

θ

+

sin

2

θ

=

1

cos

2

θ

=

1

2

sin

2

θ

First calculate

sin

3

θ

sin

3

θ

=

sin

(

2

θ

+

θ

)

=

sin

2

θ

cos

θ

+

cos

2

θ

sin

θ

=

2

sin

θ

cos

2

θ

+

(

1

2

sin

2

θ

)

sin

θ

=

2

sin

θ

(

1

sin

2

θ

)

+

(

1

2

sin

2

θ

)

sin

θ

=

3

sin

θ

4

sin

3

θ

And

1

+

2

cos

2

θ

=

1

+

2

(

1

2

sin

2

θ

)

=

3

4

sin

2

θ

Therefore,

R

H

S

=

sin

3

θ

1

+

2

cos

2

θ

=

3

sin

θ

4

sin

3

θ

3

4

sin

2

θ

=

sin

θ

3

4

sin

2

θ

3

4

sin

2

θ

=

sin

θ

=

R

H

S

Q

E

D

please mark me as brain list

Similar questions