sin^3(π+x) sec^2(π-x)tan(2π-x)/cos^2(π/2+x)sin(π-x)cosec^2-x=tan^3
Answers
Answered by
1
Step-by-step explanation:
sin(sin−1x) = x, if -1 ≤ x ≤ 1
cos(cos−1x) = x, if -1 ≤ x ≤ 1
tan(tan−1x) = x, if -∞ ≤ x ≤∞
cot(cot−1x) = x, if -∞≤ x ≤∞
sec(sec−1x) = x, if -∞ ≤ x ≤ -1 or 1 ≤ x ≤ ∞
cosec(cosec−1x) = x, if -∞ ≤ x ≤ -1 or 1 ≤ x ≤ ∞
Also, the following formulas are defined for inverse trigonometric functions.
sin−1(sin y) = y, if -π/2 ≤ y ≤ π/2
cos−1(cos y) =y, if 0 ≤ y ≤ π
tan−1(tan y) = y, if -π/2 <y< π/2
cot−1(cot y) = y if 0<y< π
sec−1(sec y) = y, if 0 ≤ y ≤ π, y ≠ π/2
cosec−1(cosec y) = y if -π/2 ≤ y ≤ π/2, y ≠ 0
I hope it is helpful for you all,if it is helpful for you all then plz mark me as brainlist.
thankyou
Similar questions