Math, asked by advaitamadduluri, 1 month ago

sin 30 degrees + Cos 60 degrees minus sin 60 degrees + cos 30 degrees is equal to
whoever answers it correctly I will mark them the brainliest​

Answers

Answered by IIBandookbaazII
22

As we know that:

cos 60° = 1/2, cos 30° = √3/2, sin 60° = √3/2, sin 30° = 1/2

Substituting all the values in the given expression,

(1/2 × √3/2) + (√3/2 × 1/2)

= √3/4 + √3/4

= 2√3/4

= √3/2

Thus, (cos 60° × cos 30°) + (sin 60° × sin 30°) = √3/2

Answered by GraceS
4

\sf\huge\bold{Answer:}

Given :

:⟶ \sin(30 \degree)  +  \cos(60 \degree)  -  \sin(60 \degree)  +  \cos(30 \degree)  \\

To find :

Value of above trigonometric expression.

Solution :

:⟶ \sin(30 \degree)  +  \cos(60 \degree)  -  \sin(60 \degree)  +  \cos(30 \degree)  \\

Values of trigonometric ratios is as follows :

  • Sin 30° = 1/2
  • Cos 60° = 1/2
  • Sin 60° = √3/2
  • Cos 30° = √3/2

Inserting Values of trigonometric ratios in the expression

 =  \frac{1}{2}  +  \frac{1}{2}  -  \frac{ \sqrt{3} }{2}  +  \frac{ \sqrt{3} }{2}  \\

Taking LCM

 =  \frac{1 + 1 -  \sqrt{3}  +  \sqrt{3} }{2}  \\

Solving numerator

 =  \frac{2 }{ 2 }  \\

Simplifying by cutting the fraction to lowest form

 = 1

Hence,

:⟶ \sin(30 \degree)  +  \cos(60 \degree)  -  \sin(60 \degree)  +  \cos(30 \degree)  = 1 \\

Similar questions