Math, asked by akashpunkstr5814, 10 months ago

Sin 30°+Tan 45°−Cosec 60°
Sec 30°+Cos 60°+Cot 45°

Answers

Answered by sam885104
1

Step-by-step explanation:

1) Sin30° + tan45° - Cosec60°

= 1/2 + 1 - 2/√3

= (3√3 - 4)/2√3

2) Sec30° + cos60° + cot45°

= 2/√3 + 1/2 + 1

= (4 + 3√3)/2√3

Answered by sourya1794
47

Correct Question :-

sin30° + tan45° - cosec60°/ sec30° + cos60° + cot45°

Solution :-

\rm\longrightarrow\dfrac{\dfrac{1}{2}+1-\dfrac{2}{\sqrt{3}}}{\dfrac{2}{\sqrt{3}}+\dfrac{1}{2}+1}

\rm\longrightarrow\dfrac{\dfrac{\sqrt{3}+2\sqrt{3}-4}{2\sqrt{3}}}{\dfrac{4+\sqrt{3}+2\sqrt{3}}{2\sqrt{3}}}

\rm\longrightarrow\dfrac{\dfrac{3\sqrt{3}-4}{2\sqrt{3}}}{\dfrac{3\sqrt{3}+4}{2\sqrt{3}}}

\rm\longrightarrow\:\dfrac{3\sqrt{3}-4}{\cancel{2\sqrt{3}}}\times\:\dfrac{\cancel{2\sqrt{3}}}{3\sqrt{3}+4}

\rm\longrightarrow\:\dfrac{3\sqrt{3}-4}{3\sqrt{3}+4}

Rationalize the denominator

\rm\longrightarrow\:\dfrac{(3\sqrt{3}-4)}{(3\sqrt{3}+4)}\times\dfrac{(3\sqrt{3}-4)}{(3\sqrt{3}-4)}

\rm\longrightarrow\:\dfrac{(3\sqrt{3}-4)^2}{(3\sqrt{3})^2-{(4)}^{2}}

\rm\longrightarrow\:\dfrac{(3\sqrt{3})^2-2\times\:3\sqrt{3}\times\:4+{(4)}^{2}}{(3\sqrt{3})^2-{(4)}^{2}}

\rm\longrightarrow\:\dfrac{27-24\sqrt{3}+16}{27-16}

\rm\longrightarrow\:\dfrac{43-24\sqrt{3}}{11}

Hence,the Solution will be \rm\:\dfrac{43-24\sqrt{3}}{11}

Similar questions