Math, asked by ij839573, 9 months ago

sin 30°+ tan 45°- cosec 60°/ sec 30° + sin2 30°+ cos2 30°​

Answers

Answered by Aloi99
4

Question:-

๛Simplify:-

➜Sin30°+Tan45°- \frac{Cosec60°}{Sec30°} +Sin²30°+Cos²30°

\rule{200}{1}

AnsWer:-

 \frac{3}{2} or 1.5

\rule{200}{1}

Explanation:

 \frac{1}{2} +1- \frac{Cosec60°}{Cosec(90-30)°} +( \frac{1}{2} )²+( \frac{\sqrt{3}}{2}

 \frac{1+2}{2} - \frac{\cancel{Cosec60°}}{\cancel{Cosec60°}} + \frac{1}{4} + \frac{3}{4}

 \frac{3}{2} -1+ \frac{\cancel{4}}{\cancel{4}}

 \frac{3-2}{2} +1

↝½+1

 \frac{1+2}{2}

 \frac{3}{2}

\rule{200}{2}

Answered by Anonymous
2

Question :

  • Evaluate : sin 30°+ tan 45°- cosec 60°/ sec 30° + sin² 30°+ cos² 30°

Solution :

\implies \tt\sin 30 +\tan 45 -  \frac{ \csc60}{ \sec30}  +  { \sin}^{2} 30 + { \cos}^{2} 30 \\ \\\tt\implies \dfrac{1}{2}  + 1 -  \dfrac{ \dfrac{2}{ \sqrt{3} } }{ \dfrac{2}{ \sqrt{3} } }  + {  \bigg (\dfrac{1}{2} \bigg)}^{2} + { \bigg(\frac{ \sqrt{3} }{2}  \bigg)}^{2} \\  \\  \tt \implies \dfrac{1}{2} + 1 -  \cancel{  \frac{2 \sqrt{3} }{2 \sqrt{3} }}  +  \dfrac{1}{4}  +  \dfrac{3}{4}  \\  \\  \tt \implies \dfrac{2 + 4 - 4 + 1 + 3}{4}  \\  \\ \tt \implies \dfrac{6}{4} \\ \\\tt \implies \dfrac{3}{2}

Similar questions