(sin 30° + tan 45°-
cosec60°)/
(sec 30° + cos 60° - cot 45°)
Answers
Answered by
1
Step-by-step explanation:
given that
\frac{(sin30 + tan45 - cosec60)}{(sec30 + cos60 + cot45)}
(sec30+cos60+cot45)
(sin30+tan45−cosec60)
\frac{ \frac{1}{2}+1- \frac{2}{ \sqrt{3}} }{ \frac{2}{ \sqrt{3}}+ \frac{1}{2}+1}
3
2
+
2
1
+1
2
1
+1−
3
2
\frac{ \sqrt{3}+2 \sqrt{3} - 4 }{4 + \sqrt{3} + 2 \sqrt{3} }
4+
3
+2
3
3
+2
3
−4
\frac{ 3 \sqrt{3} - 4 }{4 + 3 \sqrt{3} }
4+3
3
3
3
−4
Rationalise the denominator
\frac{ 3 \sqrt{3} - 4 }{4 + 3 \sqrt{3} } * \frac{ 3 \sqrt{3} - 4 }{3 \sqrt{3} - 4 }
4+3
3
3
3
−4
∗
3
3
−4
3
3
−4
\frac{(3 \sqrt{3} - 4 )^2}{ (3 \sqrt{3} )^2-(4)^2 }
(3
3
)
2
−(4)
2
(3
3
−4)
2
\frac{27+16-24 \sqrt{3} }{27-16}
27−16
27+16−24
3
\frac{43-24 \sqrt{3} }{11}
11
43−24
3
Similar questions
Math,
2 months ago
Social Sciences,
6 months ago
Social Sciences,
6 months ago
Accountancy,
10 months ago
English,
10 months ago
History,
10 months ago