Math, asked by suurrraaaajjjjj, 10 months ago


sin 30° + tan 45º - cosec 60°/
sec 30° + cós 60° + cot 45°​

Answers

Answered by Anonymous
24

Given :-

(sin30° + tan45° - cosec60°)/(sec30° + cos60° + cot45°)

We know that,

  • sin30° = 1/2

  • tan45° = 1

  • cosec60° = 2/√3

  • sec30° = 2/√3

  • cos60° = 1/2

  • cot45° = 1

Therefore (sin30° + tan45° - cosec60°)/(sec30° + cos60° + cot45°) :-

= (1/2 + 1 - 2/√3)/(2/√3 + 1/2 + 1)

 \sf =  \frac{ \frac{ \sqrt{3} }{2 \sqrt{3} }  +  \frac{2 \sqrt{3} }{2 \sqrt{3} }  -   \frac{4}{2 \sqrt{3} }  }{ \frac{4}{2 \sqrt{3} } +  \frac{ \sqrt{3} }{2 \sqrt{3} } +  \frac{2 \sqrt{3} }{2 \sqrt{3} }   }  \\  \\  \sf =  \frac{ \frac{3 \sqrt{3} - 4 }{2 \sqrt{3} } }{ \frac{3 \sqrt{3 } + 4 }{2 \sqrt{3} } }  \\  \\  \sf =  \frac{3 \sqrt{3}  - 4}{2 \sqrt{3} }  \times  \frac{2 \sqrt{3} }{3 \sqrt{3}  + 4}  \\  \\  \sf =  \frac{3 \sqrt{3} - 4 }{3 \sqrt{3}  + 4}

By rationalizing, we get

= (43 - 24√3)/11

Hence, the value of (sin 30° + tan 45º - cosec 60°)/(sec 30° + cos 60° + cot 45°) is (43 - 24√3)/11

Similar questions