Math, asked by abirami59, 3 months ago

sin 30° + tan 45º - cosec 60°/
sec 30° + cos 60° + cot 45°

Answers

Answered by Anonymous
13

 \huge\underline{\underline{\bf { \red A \green N \pink S\blue W \orange E \purple R \green{...}}}}

\longrightarrow \sf \frac{ \sin 30° +  \tan 45° -  \cosec 60°}{ \sec 30° +  \cos 60° +  \cot 45°} \\  \\\longrightarrow \sf  \dfrac{ \dfrac{1}{2} + 1 -  \dfrac{2}{ \sqrt{3} }  }{ \dfrac{2 }{ \sqrt{3}} +  \dfrac{1}{2}   + 1} \\  \\ \longrightarrow \sf \dfrac{ \dfrac{ \sqrt{3} + 2 \sqrt{3} - 4  }{2 \sqrt{3} } }{ \dfrac{4 +  \sqrt{3} + 2 \sqrt{3}  }{2 \sqrt{3} } } \\  \\  \longrightarrow \sf\frac{ \sqrt{3} + 2 \sqrt{3} - 4 }{4 +  \sqrt{3} + 2 \sqrt{3} } \\  \\  \longrightarrow \sf\frac{3 \sqrt{3} - 4 }{3 \sqrt{3}   + 4 } \times  \frac{3 \sqrt{3}  -  4}{3 \sqrt{3}  - 4} \\  \\\longrightarrow \sf  \frac{27   - 12 \sqrt{3} - 12 \sqrt{3} + 16 }{27 - 16} \\  \\ \longrightarrow \boxed{\sf \frac{43 - 24 \sqrt{3} }{11}}


BaroodJatti12: good:-)
Answered by BaroodJatti12
57

\huge{\underline{\underline{\boxed{\sf{\purple{Answer ࿐}}}}}}

refer to the attachment please

Attachments:
Similar questions