Math, asked by zeba07, 1 month ago

sin 35° cos 55° + cos 35° sin 55° / cosec 2-10- tan 280​

Answers

Answered by AnushaRangappa
2

Step-by-step explanation:

hope it's helpful to you

thankyou

please make me an BRAINLIST

Attachments:
Answered by rudranshbhatt14sep20
0

Answer:

We have,

\dfrac{\sin 35\cos 55 +\cos 35\sin 55}{\csc^2 10-\tan^2 80}

csc

2

10−tan

2

80

sin35cos55+cos35sin55

To find, \dfrac{\sin 35\cos 55 +\cos 35\sin 55}{\csc^2 10-\tan^2 80}=?

csc

2

10−tan

2

80

sin35cos55+cos35sin55

=?

∴ \dfrac{\sin 35\cos 55 +\cos 35\sin 55}{\csc^2 10-\tan^2 80}

csc

2

10−tan

2

80

sin35cos55+cos35sin55

=\dfrac{\sin (35+55)}{\csc^2 10-\tan^2 (90-10)}=

csc

2

10−tan

2

(90−10)

sin(35+55)

[ ∵ \sin (A+B)=\sin A\cos B +\cos A\sin Bsin(A+B)=sinAcosB+cosAsinB

=\dfrac{\sin 90}{\csc^2 10-\cot^2 10}=

csc

2

10−cot

2

10

sin90

=\dfrac{1}{1}=

1

1

[ ∵ \sin 90=1sin90=1 and \csc^2 A-\cot^2 A=1csc

2

A−cot

2

A=1

= 1

Hence, \dfrac{\sin 35\cos 55 +\cos 35\sin 55}{\csc^2 10-\tan^2 80}=1

csc

2

10−tan

2

80

sin35cos55+cos35sin55

=1

Similar questions