sin ³a +cos ³a/sina + cos a + sina cosa =1
Answers
Answered by
9
To Prove : [ { sin³A + cos³A } / { sinA + cosA } ] + cosA sinA = 1
Proof :
From the properties of expansion we know that a³ + b³, when factorised, is ( a + b)( a² + b² - ab) .
Therefore,
sin³A + cos³A will be ( sinA + cosA )( cos²A + sin²A - cosAsinA )
Thus,
= > [ { ( sinA + cosA )( sin²A + cos²A - sinAcosA) } / { sinA + cosA } ] + sinAcosA
Removing ( sinA + cosA) from numerator and denominator both.
From the properties of trigonometry, we know : sin²A + cos²A
= > [ 1 - sinA cosA ] + sinAcosA
= > 1 - sinAcosA + sinAcosA
= > 1
Hence proved.
Similar questions