sin^3A+cos^3A/sinA+cosA=1-sin*cos prove it
Answers
Answer:
Step-by-step explanation:
(sin ^3 A + cos^3 A)/(sinA + cosA)
or (sin ^2 A *sinA + cos^2 A*cosA)/(sinA + cosA)
or ((1-cos^2 A)*sinA + (1-sin^2 A)*cosA)/(sinA + cosA)
or (sinA-cos^2 AsinA + cosA-sin^2 AcosA)/(sinA + cosA)
or (sinA + cosA - cos^2 AsinA - sin^2 AcosA)/(sinA + cosA)
or (sinA + cosA - cos^2 AsinA - cosAsin^2 A)/(sinA + cosA)
or ((sinA + cosA) - cosAsinA*(cosA + sinA))/(sinA + cosA)
or ((sinA + cosA) - cosAsinA*(sinA + cosA))/(sinA + cosA)
or ((sinA + cosA)*(1 - cosAsinA))/(sinA + cosA)
or (sinA + cosA)*(1 - cosAsinA)/(sinA + cosA)
or (1 - cosAsinA)
Step-by-step explanation:
Answer:
Step-by-step explanation:
Diameter of the metallic sphere = 9 cm
Radius of the metallic sphere , r = 9/2 cm = 4.5 cm
Volume of the metallic sphere = 4/3 × πr³
Diameter of the cylindrical wire = 2 mm = 2/10 cm = 0.2 cm
Radius of the cylindrical wire , r1 = 0.2/2 cm = 0.1 cm
Let the height of the cylindrical wire = h cm
Volume of the cylindrical wire = πr1²×h
Volume of the metallic sphere = Volume of the cylindrical wire
4/3 × πr³ = πr1²×h
4/3 × π × 4.5³ = π(0.1)²×h
4/3 × 4.5 × 4.5 × 4.5 = 0.01h
4 × 1.5 × 4.5 × 4.5 = 0.01 × h
h = (4 × 1.5 × 4.5 × 4.5)/0.01
h = 121.5/0.01 = 121.5 × 100 = 12150 cm
h = 12150 cm
Hence, the required length of the wire is 12150 cm.
Answer:
Step-by-step explanation:
(sin ^3 A + cos^3 A)/(sinA + cosA)
or (sin ^2 A *sinA + cos^2 A*cosA)/(sinA + cosA)
or ((1-cos^2 A)*sinA + (1-sin^2 A)*cosA)/(sinA + cosA)
or (sinA-cos^2 AsinA + cosA-sin^2 AcosA)/(sinA + cosA)
or (sinA + cosA - cos^2 AsinA - sin^2 AcosA)/(sinA + cosA)
or (sinA + cosA - cos^2 AsinA - cosAsin^2 A)/(sinA + cosA)
or ((sinA + cosA) - cosAsinA*(cosA + sinA))/(sinA + cosA)
or ((sinA + cosA) - cosAsinA*(sinA + cosA))/(sinA + cosA)
or ((sinA + cosA)*(1 - cosAsinA))/(sinA + cosA)
or (sinA + cosA)*(1 - cosAsinA)/(sinA + cosA)
or (1 - cosAsinA)